Algorithmus für die Suche nach dem Verhältnis von zwei floating-point-zahlen?

Brauche ich, um das Verhältnis von einer Gleitkommazahl in eine andere, und das Verhältnis benötigt werden zwei Ganzzahlen. Zum Beispiel:

  • Eingang: 1.5, 3.25
  • Ausgabe: "6:13"

Kennt jemand eine? Die Suche im internet, fand ich keinen solchen Algorithmus noch ein Algorithmus für das kleinste gemeinsame Vielfache oder Nenner von zwei floating-point-zahlen (nur ganze zahlen).

Java-Implementierung:


Dies ist die endgültige Implementierung, die werde ich verwenden:

public class RatioTest
{
  public static String getRatio(double d1, double d2)//1.5, 3.25
  {
    while(Math.max(d1,d2) < Long.MAX_VALUE && d1 != (long)d1 && d2 != (long)d2)
    {
      d1 *= 10;//15 -> 150
      d2 *= 10;//32.5 -> 325
    }
    //d1 == 150.0
    //d2 == 325.0
    try
    {
      double gcd = getGCD(d1,d2);//gcd == 25
      return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));//"6:13"
    }
    catch (StackOverflowError er)//in case getGDC (a recursively looping method) repeats too many times
    {
      throw new ArithmeticException("Irrational ratio: " + d1 + " to " + d2);
    }
  }

  public static double getGCD(double i1, double i2)//(150,325) -> (150,175) -> (150,25) -> (125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
  {
    if (i1 == i2)
      return i1;//25
    if (i1 > i2)
      return getGCD(i1 - i2, i2);//(125,25) -> (100,25) -> (75,25) -> (50,25) -> (25,25)
    return getGCD(i1, i2 - i1);//(150,175) -> (150,25)
  }
}
  • -> gibt an die nächste Stufe in der Schleife oder den Aufruf der Methode

Mystische Umsetzung als Java:


Obwohl ich nicht mit dazu, es mehr als verdient anerkannt zu werden, so übersetzte ich es auf Java, also ich könnte es verstehen:

import java.util.Stack;

public class RatioTest
{
    class Fraction{
        long num;
        long den;
        double val;
    };

    Fraction build_fraction(Stack<long> cf){
        long term = cf.size();
        long num = cf[term - 1];
        long den = 1;
        while (term-- > 0){
            long tmp = cf[term];

            long new_num = tmp * num + den;
            long new_den = num;

            num = new_num;
            den = new_den;
        }

        Fraction f;
        f.num = num;
        f.den = den;
        f.val = (double)num / (double)den;

        return f;
    }

    void get_fraction(double x){
        System.out.println("x = " + x);

        // Generate Continued Fraction
        System.out.print("Continued Fraction: ");
        double t = Math.abs(x);
        double old_error = x;
        Stack<long> cf;
        Fraction f;
        do{
            // Get next term.
            long tmp = (long)t;
            cf.push(tmp);

            // Build the current convergent
            f = build_fraction(cf);

            // Check error
            double new_error = Math.abs(f.val - x);
            if (tmp != 0 && new_error >= old_error){
                // New error is bigger than old error.
                // This means that the precision limit has been reached.
                // Pop this (useless) term and break out.
                cf.pop();
                f = build_fraction(cf);
                break;
            }
            old_error = new_error;
            System.out.print(tmp + ", ");

            // Error is zero. Break out.
            if (new_error == 0)
                break;

            t -= tmp;
            t = 1/t;
        }while (cf.size() < 39); // At most 39 terms are needed for double-precision.
        System.out.println();System.out.println();

        // Print Results
        System.out.println("The fraction is:   " + f.num + " /" + f.den);
        System.out.println("Target x = " + x);
        System.out.println("Fraction = " + f.val);
        System.out.println("Relative error is: " + (Math.abs(f.val - x) / x));System.out.println();
        System.out.println();
    }
    public static void main(String[] args){
        get_fraction(15.38 / 12.3);
        get_fraction(0.3333333333333333333);    // 1 /3
        get_fraction(0.4184397163120567376);    // 59 /141
        get_fraction(0.8323518818409020299);    // 1513686 /1818565
        get_fraction(3.1415926535897932385);    // pi
    }
}

Eine WEITERE Sache:


Den oben genannten implementiert werden-dies funktioniert IN der THEORIE, jedoch aufgrund von floating-point-Rundungsfehler, diese Ergebnisse in eine Menge von unerwarteten Ausnahmen, Fehler-und Ausgänge. Unten ist eine praktische, robuste, aber ein bisschen schmutzig Umsetzung von Verhältnis-finding-Algorithmus (Javadoc würde für Ihre Bequemlichkeit):

public class RatioTest
{
  /** Represents the radix point */
  public static final char RAD_POI = '.';

  /**
   * Finds the ratio of the two inputs and returns that as a <tt>String</tt>
   * <h4>Examples:</h4>
   * <ul>
   * <li><tt>getRatio(0.5, 12)</tt><ul>
     *   <li>returns "<tt>24:1</tt>"</li></ul></li>
   * <li><tt>getRatio(3, 82.0625)</tt><ul>
   *   <li>returns "<tt>1313:48</tt>"</li></ul></li>
   * </ul>
   * @param d1 the first number of the ratio
   * @param d2 the second number of the ratio
   * @return the resulting ratio, in the format "<tt>X:Y</tt>"
   */
  public static strictfp String getRatio(double d1, double d2)
  {
    while(Math.max(d1,d2) < Long.MAX_VALUE && (!Numbers.isCloseTo(d1,(long)d1) || !Numbers.isCloseTo(d2,(long)d2)))
    {
      d1 *= 10;
      d2 *= 10;
    }
    long l1=(long)d1,l2=(long)d2;
    try
    {
      l1 = (long)teaseUp(d1); l2 = (long)teaseUp(d2);
      double gcd = getGCDRec(l1,l2);
      return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
    }
    catch(StackOverflowError er)
    {
      try
      {
        double gcd = getGCDItr(l1,l2);
        return ((long)(d1 / gcd)) + ":" + ((long)(d2 / gcd));
      }
      catch (Throwable t)
      {
        return "Irrational ratio: " + l1 + " to " + l2;
      }
    }
  }


  /**
   * <b>Recursively</b> finds the Greatest Common Denominator (GCD)
   * @param i1 the first number to be compared to find the GCD
   * @param i2 the second number to be compared to find the GCD
   * @return the greatest common denominator of these two numbers
   * @throws StackOverflowError if the method recurses to much
   */
  public static long getGCDRec(long i1, long i2)
  {
    if (i1 == i2)
      return i1;
    if (i1 > i2)
      return getGCDRec(i1 - i2, i2);
    return getGCDRec(i1, i2 - i1);
  }

  /**
   * <b>Iteratively</b> finds the Greatest Common Denominator (GCD)
   * @param i1 the first number to be compared to find the GCD
   * @param i2 the second number to be compared to find the GCD
   * @return the greatest common denominator of these two numbers
   */
  public static long getGCDItr(long i1, long i2)
  {
    for (short i=0; i < Short.MAX_VALUE &&  i1 != i2; i++)
    {
      while (i1 > i2)
        i1 = i1 - i2;
      while (i2 > i1)
        i2 = i2 - i1;
    }
      return i1;
  }

  /**
   * Calculates and returns whether <tt>d1</tt> is close to <tt>d2</tt>
   * <h4>Examples:</h4>
   * <ul>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.0001</tt>, <tt>d2 == 5</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5.0001</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.24999</tt>, <tt>d2 == 5.25</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5.25</tt>, <tt>d2 == 5.24999</tt>
   *   <ul><li>returns <tt>true</tt></li></ul></li>
   * <li><tt>d1 == 5</tt>, <tt>d2 == 5.1</tt>
   *   <ul><li>returns <tt>false</tt></li></ul></li>
   * </ul>
   * @param d1 the first number to compare for closeness
   * @param d2 the second number to compare for closeness
   * @return <tt>true</tt> if the two numbers are close, as judged by this method
   */
  public static boolean isCloseTo(double d1, double d2)
  {
    if (d1 == d2)
      return true;
    double t;
    String ds = Double.toString(d1);
    if ((t = teaseUp(d1-1)) == d2 || (t = teaseUp(d2-1)) == d1)
      return true;
    return false;
  }

  /**
   * continually increases the value of the last digit in <tt>d1</tt> until the length of the double changes
   * @param d1
   * @return
   */
  public static double teaseUp(double d1)
  {
    String s = Double.toString(d1), o = s;
    byte b;
    for (byte c=0; Double.toString(extractDouble(s)).length() >= o.length() && c < 100; c++)
      s = s.substring(0, s.length() - 1) + ((b = Byte.parseByte(Character.toString(s.charAt(s.length() - 1)))) == 9 ? 0 : b+1);
    return extractDouble(s);
  }

  /**
   * Works like Double.parseDouble, but ignores any extraneous characters. The first radix point (<tt>.</tt>) is the only one treated as such.<br/>
   * <h4>Examples:</h4>
   * <li><tt>extractDouble("123456.789")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("1qw2e3rty4uiop[5a'6.p7u8&9")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("123,456.7.8.9")</tt> returns the double value of <tt>123456.789</tt></li>
   * <li><tt>extractDouble("I have $9,862.39 in the bank.")</tt> returns the double value of <tt>9862.39</tt></li>
   * @param str The <tt>String</tt> from which to extract a <tt>double</tt>.
   * @return the <tt>double</tt> that has been found within the string, if any.
   * @throws NumberFormatException if <tt>str</tt> does not contain a digit between 0 and 9, inclusive.
   */
  public static double extractDouble(String str) throws NumberFormatException
  {
    try
    {
      return Double.parseDouble(str);
    }
    finally
    {
      boolean r = true;
      String d = "";
      for (int i=0; i < str.length(); i++)
        if (Character.isDigit(str.charAt(i)) || (str.charAt(i) == RAD_POI && r))
        {
          if (str.charAt(i) == RAD_POI && r)
            r = false;
          d += str.charAt(i);
        }
      try
      {
        return Double.parseDouble(d);
      }
      catch (NumberFormatException ex)
      {
        throw new NumberFormatException("The input string could not be parsed to a double: " + str);
      }
    }
  }
}
  • Konvertieren Sie beide Fraktionen, und dann Ausgabe, ratio (nach dem verkleinern)?
  • und.... wie soll ich das tun?
  • Ich habe gerade ersetzt, mein pseudo-code mit einer voll funktionsfähigen Implementierung in C++. Es sollte nicht zu schwer zu konvertieren, um Java.
  • EDIT: ich habe gerade getestet mit meiner version besser. Es ist in der Lage, perfekt erkennen, die Fraktionen, die bei den meisten 4 - 5 Ziffern lang in beiden Zähler und Nenner. Etwas länger und es ist hit und miss. (Für die Java-version ändern Sie die 4294967296 zu 2147483648 oder es könnte ein integer-überlauf bei der Besetzung.)
  • Für Ihren aktualisierten code, Skalierung von 2 statt 10 wird loszuwerden, die Rundungsfehler. Aber es gibt verschiedene (aber immer noch gültigen) Antworten. Meine Umsetzung leidet auch stark von round-off. (also, warum es nicht funktioniert, wenn der Anteil größer ist als 5 Ziffern.) Es gibt einen Weg, um dieses Problem zu lösen, aber es ist auch messier...
  • Gute Idee - ich werde das ausprobieren!

InformationsquelleAutor Supuhstar | 2011-09-27
Schreibe einen Kommentar